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Léon Foucault demonstrated his
famous 67 metre pendulum with a
22 kg bob mass at the Panthéon in
Paris in 1851. It has since become
one of the fundamental
experiments of physics.
The period of Foucault’s 67 m
pendulum was 16.5 s and the
latitude of the Panthéon is 48° 52!
N. The plane of oscillation there
makes one rotation in:
"#$ %&'()

)*+, ~ 31 hours 50 mins. So
it’s precession rate at that location
is 11.3°/hour. A ‘pendulum day’ is
therefore dependent on the
latitude of the location.

[both gifs courtesy of Wikipedia, October 2021]
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[source – Wikipedia (Le Petit Parisien November 2,
1902, 50th anniversary of the experiment of Léon
Foucault demonstrating the rotation of Earth]

The Foucault Pendulum – a possible measurement instrument
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Foucault pendulum location            Parametric excitation of the pendulum         

Predicted daily FP precession against latitude

𝑙! = 4.6855 +/- 0.0005 m. Test pendulum suspended from laboratory
roof, University of Strathclyde, and driven into principal parametric
resonance through length variation 𝑙" = 0.001𝑙!. Tempered mild-steel
wire, tungsten bob.

Linear drive (top end)     Spherical joint (top end)
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Snapshots of geographical location data

g against latitude

Radius of Earth against latitude - oblateness
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Modelling – equations of motion in Earth centred system: 

Earth-fixed frame –
pendulum at latitude 
𝜙, location p

Local system, 
located at p, 
coordinates x and y

[Cartmell, Faller, Lockerbie, Handous, 2020]
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A new pendulum design – no excitation and then parametrically excited 

Pendulum response over 1 hour at the North Pole for no parametric excitation, 𝑙- = 0 (left) and for parametric 
excitation, 𝑙- = 0.040 𝑚 (right). Red dots: displ. ICs (𝑥., 𝑦.) = 0.1, 0 𝑚, blue dots: end points (𝑥/0+1, 𝑦/0+1), 
vel ICs are �̇�. = �̇�. = 0𝑚/𝑠. Data: 𝑙. = 4𝑚, 𝑔 = 9.8320 ⁄𝑚 𝑠", Ω = 7.2921150 ∗ 102% ⁄𝑟𝑎𝑑 𝑠, 𝜙 =
1.5705 𝑟𝑎𝑑, 𝑟 = 6357.00 ∗ 10#𝑚, 𝑚 = 5 𝑘𝑔, 𝜌 =
1.189 ⁄𝑘𝑔 𝑚#, 𝐶3 = 102&, 𝑅454 = 0.0463134 𝑚, 𝑡0+1 = 3600 𝑠, 𝜖𝜎 = 0.    

Displacements in metres. 
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Effect of increasing the displacement ICs  

Pendulum response over 4 hours at the North Pole for no
parametric excitation, same data except for 𝑥. = 0.5 𝑚 and
𝑡0+1 = 14400 𝑠.

 
PPR  

 
3,600 s Sidereal  

day 
off 15.042 º 360.029 º 
on 15.027 º 359.671 º 
PPR 

 
14,400 s   Sidereal 

day 
off 60.016º 360.095º 

Predicted precessions
at the North Pole for
two different integration
times and parametric
excitation off/on.

These numerical results suggest that the North Pole can be a benchmark location for validating the
numerical integration routine, and therefore predicting the operation of the pendulum in other places.
See [Cartmell, Faller, Lockerbie, and Handous, 2020] for a fuller exploration of locations.
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Locating the new pendulum in Glasgow, Scotland
Glasgow is at a latitude of 55.86º N (0.975 rad N), noting that the local values for the
acceleration due to gravity, 𝑔, and the radius of the Earth, 𝑟, vary from those for the North Pole,
all other data maintained except where specifically indicated.

Pendulum responses over 1 hour at Glasgow for no parametric excitation, 𝑙- = 0 (left) and for parametric 
excitation, 𝑙- = 0.040 𝑚 (right). Red dots: displ. ICs (𝑥., 𝑦.) = 0.1, 0 𝑚, blue dots: end points (𝑥/0+1, 𝑦/0+1), 
velocity ICs are �̇�. = �̇�. = 0𝑚/𝑠. Data: 𝑙. = 4𝑚, 𝑔 = 9.8156 ⁄𝑚 𝑠", Ω = 7.2921150 ∗ 102% ⁄𝑟𝑎𝑑 𝑠, 𝜙 =
0.9750 𝑟𝑎𝑑, 𝑟 = 6363.18 ∗ 10#𝑚, 𝑚 = 5 𝑘𝑔, 𝜌 =
1.189 ⁄𝑘𝑔 𝑚#, 𝐶3 = 102&, 𝑅454 = 0.0463134 𝑚, 𝑡0+1 = 3600 𝑠, 𝜖𝜎 = 0. 
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PPR  

 
3,600 s Sidereal  

day 
off 12.420 º 297.265 º 
on 12.358 º 296.503 º 

Precession data for Glasgow
given in the table, over 1
hour and then extrapolated
over one sidereal day. The
aggregated numerical error
can potentially be < 0.1%.



AEROSPACE CENTRE  -

Foucault pendulum performance – a fundamental difficulty:
• A very real problem with all Foucault pendulums is the tendency for the planar motion to degenerate into

ellipticity over time.
• It’s associated with a frequency anisotropy effect, showing increasingly different periods of each axis of the

developing elliptical response.
• This effect is triggered by structural asymmetries – much worse in shorter pendulums.
• This is why Foucault’s relatively long 67 metre installation in the Panthéon operated quite successfully over

time.
• So, longer Foucault pendulums are inherently less sensitive to ellipticity error than shorter pendulums, and

we must therefore maximise pendulum length as far as possible.

• Our analyses have shown that the dependence on length for ellipticity error is proportional to -
6#/%.

How do we solve this problem?
• Symmetrical design, very high-quality manufacture, and installation – very difficult to achieve perfection.
• Pippard [Pippard, 1988] suggested that parametric excitation of the length could mitigate this effect.
• Electro-mechanical mitigation measures such as electromagnetic pusher drives can be effective.

Parametric excitation is effective but very difficult to install practically. A ‘pusher’ is better.
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Applying the pendulum - a measurement challenge
General Relativity states that inertial frames are ‘influenced and dragged by the distribution and flow of
mass–energy in the universe’, noting the relativistic equivalence of mass and energy [Chartas, 2020].

A theory for frame-dragging was proposed by Hans Thirring and Josef Lense in 1918, in which inertial
frames are dragged around a central rotating mass due to the effect of its gravity on the surrounding
spacetime.

The rotation of the central mass twists the surrounding spacetime, and this perturbs the orbits of other
masses nearby. This effect is known as Lense-Thirring precession (LT). The Earth’s gravitational field is
capable of generating the frame dragging effect of LT precession.

LT precession around Earth has been measured before

The GP-B and the LAGEOS/LARES satellites both provided confirmatory measurements of LT 
precession in LEO – but at some considerable cost …   
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The GP-B satellite used IM Pegasi HR 8703 as the guide star and
operated on a circular polar orbit of 642 km altitude. The spin
axes of GP-B’s gyroscopes drifted so the Geodetic precession
(due simply to the presence of the mass of Earth rather than its
presence and its rotation) was only measured to a precision of
1.5%, which had a significant knock-on effect on the
measurement of LT. GP-B measured LT to ~ 0.039 arcsecs/year,
which is 10.833 x 10!" °/year.
By August 2008, the LT precession had been confirmed to within
15-20% of the expected result. This took almost 50 years from
planning to completion and cost US$ 750M.

The LAGEOS/LARES missions consisted of the following key goals:
- to provide an accurate measurement of the satellite's position with
respect to Earth.
- to determine the planet's shape (geoid).
- to determine tectonic plate movements associated with continental
drift.
LAGEOS/LARES measured the LT drag of its orbital plane to ~0.031
arcsecs/year, which is ~ 8.611 x 10!" °/year. This was subject to error
due to uncertainty in the Earth’s mass distribution, and there is still
some debate about the true size of the error in LAGEOS’s LT
measurement but it mainly derived from the low eccentricity of the
LAGEOS orbits and the difficulties in eliminating Earth multipoles.

[Ciufolini et al, 2011]

[https://www.nasa.gov/mission_pages/gpb/] 

[https://lageos.gsfc.nasa.gov/
& https://earth.esa.int/web/eoportal/satellite-missions/l/lares]

The GP-B satellite mission

The 
LAGEOS/
LARES 
satellites
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𝛻. K𝐸 =
𝜌
𝜀.

∇. K𝐵 = 0

∇×K𝐸 = −
𝜕 K𝐵
𝜕𝑡

∇×K𝐵 = 𝜇. ̅𝐽 + 𝜇.𝜀.
𝜕 K𝐸
𝜕𝑡

The quantity of electric field 
coming from a region of space 
is proportional to the total 
electric charge in that region.

Gravitoelectromagnetism - GEM

The magnetic field doesn’t 
come or go but travels in a 
continuous loop, so a 
monopole can’t exist in 
practice, according to 
Maxwell.

Maxwell’s Equations

The curl of the electric field  
equals the negative of the rate 
of change of the magnetic 
field. Changing the magnetic 
field alters the curl of the 
electric field, with the negative 
sign defining that they go in 
opposite directions. So, the 
curl of the electric field pushes 
electric charge round in a 
circle in the form of an electric 
current.

The curl of the magnetic field 
is proportional to the current 
density and a changing 
electric field.

The GEM analysis 
behind LT is derived in 
terms of a weak
gravitomagnetic effect on 
an accelerating mass (at 
low, non-relativistic 
velocities), and so this 
can be considered 
analogously with an 
accelerating charge 
producing a magnetic 
field, as in Maxwell’s 
equations.

If we consider 
spacetime to 
be stationary 
around the 
Earth then this 
simplifying 
stationarity is a 
basis for 
decomposing 
the Kerr 
spacetime 
metric tensor 
𝑔78 naturally 
into constituent 
parts – from 
which GEM 
then flows.
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Gravitoelectromagnetism - GEM

𝛻. K𝐸 =
𝜌
𝜀.

∇. K𝐵 = 0

∇×K𝐸 = −
𝜕 K𝐵
𝜕𝑡

∇×K𝐵 = 𝜇. ̅𝐽 + 𝜇.𝜀.
𝜕 K𝐸
𝜕𝑡

Maxwell’s equations           Gravitomagnetic equations 

∇. K𝐸9 = −4𝜋𝐺𝜌'

∇. Y𝐻 = 0

∇×K𝐸9 = 0

∇×Y𝐻 = 4 −4𝜋𝐺
𝜌'�̅�
𝑐 +

1
𝑐
𝜕 K𝐸9
𝜕𝑡

Gravity is attractive, but 
electromagnetism is both attractive 
and repulsive, so this difference leads 
to the minus signs in the RHS ‘source 
terms’ in the first and fourth GEM 
equations.

The gravitational tensor introduces 
the additional 4 in the fourth equation.

The space-space components from 
the gravitational metric tensor 
correspond to curved space rather 
than Euclidean space. As we are only 
interested here in the effects of the 
Earth’s rotation on an orbiting test 
mass then we can neglect the 
curvature of space and also those 
terms that are not gravitometric and 
of the order of (#

$
)%.

In the GEM analogy the electric field of Maxwell’s equations )𝐸 becomes the gravitoelectric field 
)𝐸& and the magnetic field of Maxwell’s equations )𝐵 becomes the gravitomagnetic field ,𝐻. The 
electric charge density 𝜌 becomes the mass density 𝜌'. The charge current density ̅𝐽 becomes 
the mass current density defined by 𝐺𝜌'�̅�, where G is Newton’s gravitational constant and �̅� is 
the velocity of the source mass. 
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Gravitoelectromagnetism - GEM

The conventional magnetic 
moment �̅� of Maxwellian 
electrodynamics creates a 
dipole magnetic field:

K𝐵 =
3K𝑛 K𝑛 ^ �̅� − �̅�

𝑟#

So, inserting �̅�9 instead of 𝜇 leads to an 
alternative form which now represents 
the Earth’s dipolar gravitomagnetic field:

Y𝐻 =
2𝐺
𝑐

̅𝑆 − 3K𝑛 K𝑛 ^ ̅𝑆
𝑟#

The abstract angular momentum for the large rotating body ̅𝑆 can be replaced by the angular momentum specific to the Earth, defined as ,𝐿′ so 
we state the Earth’s angular velocity as,

,Ω =
2𝐺
𝑐%𝑟(

,𝐿′

Therefore, the gravitomagnetic field can now be restated in terms of the Earth’s angular velocity, where ̅𝑆 ≡ ,𝐿′, noting that the GF is divided by 
the velocity of light,

,𝐻
𝑐
= ,Ω − 3)𝑛 ,Ω > )𝑛

In order to proceed to LT we need to revert to explicit angular momentum of the Earth, and then to rearrange to get the gravitomagnetic field in 
terms of fundamental quantities and in the conventional form, as follows,

,𝐻 =
4𝐺
𝑐

,𝐿′𝑟% − 3�̅�(,𝐿) > �̅�)
2𝑟*
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Gravitoelectromagnetism - GEM
Before we complete the analysis for LT precession we state the general expression for the spin precession rate for LT from the Schiff formula 
statement of LT, which is,

,Ω+,- = ,Ω+. + ,Ω&/, + ,Ω0+

where ,Ω+,- is the total angular velocity measured, assuming an orbital test mass. The right-hand side terms are the Thomas precession ,Ω+., the 
geodetic precession ,Ω&/,, and the LT precession ,Ω0+. Concentrating on the LT precession, and averaging over fast orbital motions we find that LT is 
directly equal to,

,Ω0+ =
1
%$

and so for a closely orbiting body we obtain the following for the averaged gravitomagnetic field at the poles,

,𝐻2,3/4 =
4𝐺
𝑐
)𝐿′
𝑟(

and if we now move from a general closely orbiting body to a specific terrestrial location where there is a body elevated at h from the surface 
of the Earth (therefore at altitude R, where 𝑹 = 𝒓𝑬 + 𝒉, and 𝒓𝑬 is the radius of the Earth at the location), then the LT precession from the 
gravitomagnetic field ( ,𝐻 at the foot of the previous slide) is given by, 

Ω:; =
𝐺

𝑐"𝑅# 𝐿′ 1 − 3 ̅𝑧. �̅�

The double modulus signs are needed to ensure that Ω0+ is always a positive angular precession, and the same values are obtained at numerically 
equal northern (+ve) and southern (-ve) latitudes.

[Cartmell, 2020; Cartmell, Faller, Lockerbie, Handous, 2020; Cartmell, Lockerbie, Faller, 2021]                                                                
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Calculating the LT precession for the Foucault pendulum bob mass
The scalar angular momentum 𝐿′ is given by 𝐿! = 𝐼⨁Ω⨁ and considering the Earth initially as a non-oblate 
sphere, then 𝐼⨁ =

"
%𝑀𝑟=

".  But the actual radius of gyration of the Earth is 0.576 rE, so the factor of  "%
becomes  0.576" which is 0.3316. Therefore 𝐼⨁ = 0.3316 𝑀𝑟=".

From which we obtain,

Ω:; =
0.3316 𝐺𝑀Ω⨁

𝑐"𝑅 1 − 3 𝑐𝑜𝑠𝜃

where  ̅𝑧 ^ �̅� = 𝑐𝑜𝑠𝜃 and 𝑅 ≈ 𝑟= for h very small indeed (assuming that the bob is hanging around a metre 
or so above the ground, for example). This result does not include the geodetic precession and is purely 
the LT component. The angle 𝜃 is the colatitude which is the included angle between ̅𝑧 and �̅� (the spin axis 
of Earth and the local vertical axis at the location, respectively) so 𝜃 = >

" −𝜙, where 𝜙 is the latitude as 
measured north or south from the equator. 
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Calculating the LT precession for the Foucault pendulum bob mass
Numerical data:

G = 6.67408*10-11 m3 kg-1 s-2

M = 5.972*1024 kg

Ω⨁ = 7.2921150*10-5 rad/s

c = 2.99792488*108 m/s

R = 6356*103 m at the North Pole

R = 6363.18*103 m at Glasgow

𝜙 = 1.5707963 rad at the North Pole

𝜙 = 0.9750 rad at Glasgow

Numerical results

Using our result for LT precession we 
get 𝜴𝑳𝑻 = 219.5 mas/year at the NP.

Pippard [Pippard, 1988] gives the LT 
precession as being 220 mas/year at 
the NP. Ruggiero & Tartaglia [Ruggiero 
& Tartaglia, 2008] state the LT 
precession at the NP as 281 mas/year. 

By changing both the latitude and the 
radius of the Earth to the values for the 
location of Glasgow the LT can be 
calculated using our result on slide 16 
to be 𝜴𝑳𝑻 = 162.6 mas/year. 
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Design specifications: 

Pendulum fibre:
• The longest possible fibre compatible with the site.
• A wire made of fused quartz, fused silica, or sapphire, coated 

with something conductive, or semi-conductive like amorphous 
silicon. Alternatively, we could use high purity tungsten, but this is 
quite difficult material to transport and handle. No creep!

• We need to minimise unwanted thermal stressing and be 
aware of exaggerated material brittleness due to cooling, if 
applying heat shrink fitment.

Bob:
• The bob design will need to be compatible with an electro-

mechanical ‘launcher’ mechanism needed for perfect take-off.
• Compatible mechanically and electrically with an electromagnetic 

pusher design (ref the ideas of Schumacher & Tarbet).
• The bob shape should be as dynamically close to a point mass as 

possible, so a squat cylinder is required, based on quadrupolar 
approximation to a sphere. Some test calculations show that a practical 
solution for this is quite possible using tungsten or copper. 

Pendulum system design:
• An electro-mechanical launcher system is needed for perfect take-off. ★
• An electromagnetic ‘pusher’ system is needed to eliminate long-term ellipticity and to amplify and maintain swing motion. ☼
• A perfectly symmetrical upper pivot joint is required, with minimised frictional torque transfer from the rotating lab to the pendulum wire. ☼
• An aerodynamic enclosure is needed, together with a system for small pressure reduction inside the enclosure. ★
• Seismic isolation installation to minimise the transmission of seismic and man-made vibrations from the lab to the pendulum. ☼
• EMC protection to remove the effects of electrical and electromagnetic noise on the pendulum and its instrumentation. ☼
• A real time data-stream to determine the exact position of an external reference point, such as IM Pegasi (right ascension - 22 hours 53 minutes 2.27 

seconds, declination - 16 degrees 50 minutes 28.3 seconds). ☼
• A bespoke laser tracking system to measure the precession of the pendulum relative to the lab to an accuracy of a few mas/year. ☼
• A system to measure local g to very high accuracy. ☼

18
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What is the resolution that we require for our 
instrumentation? 

Looking down on plane 
CBB’

Our modelling predicts 162.6 mas/year for LT 
precession in Glasgow, Ω:;&. If we take an initial 
operation period of one year then geometry 
gives us 𝑠 = 𝐵𝐵′, so
)
"A = sin B

" , where 162.6 mas = 0.000045166°. 
If 𝑎 = 1 metre then 𝑠 = 0.8 𝜇𝑚. 

The LT measurement is simplest at the NP, where we 
have, Ω:;'( = ΩCD)/* −ΩE)/=, where ΩE)/= is the apparent 
motion of a suitable guide star relative to the Earth, such 
as IM Pegasi. Elsewhere LT is modified by location both in 
terms of reduced FP precession and further corrections.  
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The LT precession measured at co-latitude 𝜃 is given below (Braginsky, Polnarev, and Thorne, 1984) and
comprises the measured precession of the pendulum bob m with respect to the Earth (first RHS term) minus
the apparent precession associated with a guide star relative to the Earth (second RHS term) minus the
precession of the pendulum relative to the guide star (third/fourth RHS term). At the poles the third/fourth terms
go to zero because 𝜃 is zero at both poles. An urgent objective has been to calculate a typical numerical value
for the third/fourth terms at the location of Glasgow to see how they might influence Ω:;+.

𝛺:;+ = 𝛺CD ⁄) * −𝛺 ⁄E) = −𝛺⊕ 1 − 𝑐𝑜𝑠 𝜃

The possible dominance of the third/fourth terms on 𝛺:;+ has to be determined as a priority. Significant
variations in 𝜙, hence 𝜃 arise because of fluctuations in local 𝑔, and this can be estimated by recourse to the
WGS-84 local terrestrial gravity model which can be inverted to get 𝜙 from 𝑔65IA6.

WGS-84: 𝑔65IA6 = 𝑔0J
-KL)*+%,
-2M%)*+%,

where 𝜀" = 1 − 4
A

"
and 𝑘 = 4E-2AE./

AE./

noting that 𝜃 = >
" −𝜙

𝑔65IA6 will be detected from a MEMS gravimeter as a continuous signal over time, and we can take 𝑔0J, 𝑔N, 𝑎, 𝑏
as known values that can be input to a calculation based around the WGS-84 local terrestrial gravity model.



AEROSPACE CENTRE  - 21

The gravimeter will give a fluctuating value for 𝑔65IA6 over time, and this will have an upper and lower value,
and a nominal value, with corresponding values for 𝜙, which we define as, 𝜙O, 𝜙:, and 𝜙P, respectively. This
means we can calculate three values for the co-latitude too, giving 𝜃O, 𝜃:, and 𝜃P. From that we can calculate
three associated values of the right-hand-side third and fourth terms, as follows,

𝛺;0&2 = −𝛺⊕ 1 − 𝑐𝑜𝑠 𝜃 Measurement of fluctuations 
in the local gravitational 
acceleration in the city of 
Glasgow, Scotland, 
reproduced with the 
permission of the authors of 
Microelectromechanical 
system gravimeters as a new 
tool for gravity imaging. Phil 
Trans of the Royal Society A, 
376, 20170291. 

The upper, lower, and nominal values of the third/fourth terms are,

𝛺;0&23 = −𝛺⊕ 1 − 𝑐𝑜𝑠 𝜃O

𝛺;0&24 = −𝛺⊕ 1 − 𝑐𝑜𝑠 𝜃:

𝛺;0&2' = −𝛺⊕ 1 − 𝑐𝑜𝑠 𝜃P

Range is ±100 𝜇gal ≡ ± 0.000001 m/s2
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𝑔65IA63= 9.8156 + 0.000001 = 9.815601 m/s2

𝑔65IA64= 9.8156 – 0.000001 = 9.815599 m/s2

𝑔65IA6' = 9.8156 m/s2.

Using the WGS-84 model with free air correction for elevation of Glasgow at ℎ = 38 m, we get 
the following latitude fluctuations:

𝜙O = 0.973206 rad/s,         𝜙: = 0.973165 rad/s,        𝜙P = 0.973186 rad/s.

Therefore,

𝜃O = 0.597589 rad/s,         𝜃: = 0.597631 rad/s, 𝜃P = 0.597610 rad/s.

Substituting the values for 𝜃O, 𝜃:, and 𝜃P into the right-hand-side third and fourth terms gives:

𝛺;0&23 = −0.0000126376 rad/s,       𝛺;0&24 = −0.0000126393 rad/s,       𝛺;0&2' =
−0.0000126385 rad/s.
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Converting these values from rad/s to mas/year requires a multiplicative conversion factor of 
6.50477*1015 :

𝛺;0&23 = −8.2204934323788848877 ∗ 10-. mas/year

𝛺;0&24 = −8.22161438486732635498 ∗ 10-. mas/year

𝛺;0&2' = −8.22105389997675933838 ∗ 10-. mas/year.

The numerical range of the third and fourth right-hand-side terms shows how significant their 
contribution is to the measurement of LT precession, and this range is given by 𝛺;0&23 − 𝛺;0&24, 
for which we get an absolute value (to five decimal places) of,

𝛺;0&23 − 𝛺;0&24 = 1.12095 ∗ 10Q mas/year.  

As we have seen, this range is due to a fluctuation in 𝑔65IA6 = ± 100 𝜇Gal so these calculations 
confirm that these terms will dominate the measurement of LT. Results have also been obtained 
for 𝑔65IA6 = ± 0 𝜇Gal, 𝑔65IA6 = ± 50 𝜇Gal, 𝑔65IA6 = ± 75 𝜇Gal, 𝑔65IA6 = ± 125 𝜇Gal, and 𝑔65IA6 = 
± 150 𝜇Gal, and the values calculated for  𝑅𝑎𝑛𝑔𝑒;02 = 𝛺;0&23 − 𝛺;0&24 , and plotted on the 
graph shown next …
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gravitational acceleration in the 
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Clearly the linear relationship in the Figure above confirms that the lower the measured fluctuation in 𝑔65IA6
the lower the value of the range of terms 𝑇#(, and therefore the correspondingly reduced dominance of
these terms within the measurement of Ω:;+.

Confirmation of this finding is crucial for the data processing calculations that we are developing to ensure
that the measurement of Ω:;+ is extracted to a very high level of fidelity.
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Aim: the motion of the pendulum has to be measured in such a way that the extremely small 
component due to LT precession is detectable, and extracted unequivocally from the noise floor. 

The primary requirement is for a non-contacting measurement system that can track the pendulum’s motion 
continuously over time, and resolve the LT component. 

High resolution cameras and autocollimators were considered but it was clear that in the case of the former 
the necessary resolution would only be available at extremely high cost, and the autocollimator option comes 
with a considerable additional complication in terms of the necessary tracking instrumentation and control. It 
is also noted that high quality industrial autocollimators are also extremely expensive.  

It was decided to pursue a different approach in which an optical beam-crossing system using a small array 
of four laser line generators could be used to detect the presence of the pendulum bob. Sequential 
information extracted from this system could then be used then to infer the instantaneous position of the bob 
periodically, and then to use the time-base associated with the continuous sampling of that data to detect the 
small shifts in the timing of key points in the sequence, so to detect and quantify the LT precession. 

We now proceed to summarise the three possible beam crossing geometries …  
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Case 1 – pendulum motion orthogonal to optical transmission path

For this case the bob centre 
covers distance 2𝑑R from the 
instant the bob grazes the beam 
as it approaches, to the instant 
that it still (just) grazes the beam 
as it departs. So, the overall time 
in seconds taken from start to 
finish (of beam interruption) for this 
case is given by 2𝑡15. Hence,

𝑡"15 =
𝑑R
2𝑎𝑓+

=
𝜋𝑑R

𝑎 𝑔
𝑙.
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Case 2 – pendulum swing plane located at an arbitrary angle of precession 

Here the pendulum has precessed through 𝛺
so that the swing plane is no longer 
orthogonal to the optical transmission path, 
and instead is at an arbitrary precessional
angle of 𝛺. So, the bob has to cover a longer 
distance 𝑑NN to pass across the optical 
transmission path, and that distance is given 
by the following where 𝛺 is in degrees,
𝑑NN = 2𝑑R + 2𝑎 − 3𝑑R

S
T.
.

This means that the time to cover the TL, BL 
pair and then the TR, BR pair is a little longer 
than for the first case, and is found as follows,

𝑡1-- =
1--
(AU6

=
> "15K "A2#15

7
89

"A :
;9

sec,   (where   𝑡1-- <
;
" , and

;
" =

-
"U6

= >
:
;9

). 
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Case 3 – pendulum swinging exactly along the optical transmission path 

This simple case is shown in this 
Figure, in which both the beams 
are continually interrupted for the 
whole of the time that the swing 
plane of the pendulum is aligned 
with the optical transmission 
path. This is the case when 𝛺 =
90°. The time that the sensors 
are low over one half period is 
exactly equal to the half period 
itself. They will stay low for the 
remaining half period. 
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Ellipticity Control

The pendulum is only of any use as a measurement instrument for LT precession if it can be depended on to
behave predictably over the long term. Unfortunately the performance of uncontrolled FPs is known to
degenerate over time, particularly for shorter pendulum lengths.

We have already suggested that there are two practical solutions:

Principal parametric resonance (Pippard, 1988, Cartmell et al, 2021)

Forced excitation using phased electromagnetic pulses (Schumacher and Tarbet, 2020)

Extensive theoretical and practical tests of PPR show that it is highly effective in principle, both for ellipticity
control and gain magnification, but the rise and fall of the pendulum bob due to length modulation makes any
optical detection methodology extremely difficult to implement accurately.

The second approach has been investigated in detail for short FPs by Schumacher and Tarbet, 2020, and
their results are reproduced with permission. This method for ellipticity control has been shown to be almost
perfect, over long time-scales and is being adopted henceforth in this work. This system uses two concentric
electromagnetic sensing and pusher coils to maintain planar motion of the pendulum after launch.
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Vertical	
dotted	line	
passing	
through	
point	(𝑥! , 0)

Figure and equation eproduced from 
Schumacher & Tarbet with the permission 
of the authors. The original caption stated: 
“Planar view of the approximate path of a 
spherical pendulum with semi-major axis a
and semi-minor axis b that is moving in a 
counter-clockwise ellipse. The suspension 
is centred on the z-axis above the origin. 
The pendulum is precessing at rate 𝛺, and 
in one full cycle the apex advances by a 
distance ∆𝑦, as suggested by the light 
dotted and rotated ellipse. The impulsive 
driving force is applied at 𝑥 = 𝑑, and it is 
resolved into components parallel and 
perpendicular at the major axis. The minor 
axis can be larger or smaller, resulting in a 
b-dependent magnitude of the transverse 
force 𝐹V for a fixed longitudinal force 𝐹∥.”.   

The analysis of Schumacher & Tarbet, 2020, led to this result,

3
4
𝜋𝜏
𝑇

𝑎
𝑙
"
=
𝑎
𝑑 1 −

𝑑
𝑎

"
𝑐𝑜𝑠2-

𝑑
𝑎

An algorithmic procedure then allows us to find drive pulse 
location ( ⁄1 A) against drive pulse on-time 𝑡1, to give really well 
maintained removal of ellipticity over time.
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Electromagnetic excitation of the pendulum

Reproducing the equations of motion for the unforced pendulum and including the generalised forces 𝑄X
and 𝑄Y,	 !̈ + $|!̇|!̇ − 2)̇*+,-. − !*! + /!

011 − !
! + )!
0!

= 4" 

 
)̈ + $|)̇|)̇ + 2!̇*+,-. − )*!+,-!. + 5*!+,-.67+. +	 #$

%&'(!
"#$"
%"

= 4$. 

The excitation system, based closely on the proposals of Schumacher & Tarbet, comprises two concentric
coils with an outer sense coil and an inner exciter coil. The electromagnetic dipole force results from the
interaction from a permanent neodymium magnet in the base of the bob and the inner exciter coil as the
bob passes above. The exciter coil is driven by a high current low voltage supply which is pulsed
electronically as the bob is detected by the outer sense coil, and so the form of the electromagnetic force
pulse is broadly square, and in phase with the pendulum swing as the bob passes across the coils, noting
that this is where the swing velocity is at a maximum.
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The generalised forces are now,

𝑄X =
2
𝜋
𝐹1*N
𝑀 tan2-

�̇�
𝑘 cos (tan2-

𝑦
𝑥)

𝑄Y =
2
𝜋
𝐹1*N
𝑀 tan2-

�̇�
𝑘 sin (tan2-

𝑦
𝑥)
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Upper plot: a snap-shot of the pulsatile 
generalised force 𝑄X (N) against time (s). 
Lower plot: a snap-shot of the response of 
the pendulum in 𝑥 (m) against time (s).

The mid-point of the excitation pulse 𝑄X
coincides with the zero-crossing of the 
pendulum in 𝑥 where it reaches its 
maximum velocity.
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Conclusions

1. We have derived a mathematical model of the dynamics of the Foucault pendulum and have validated it to 
within 0.1% using the North Pole as a reference location. This model is our basis for designing experimental 
pendulums.

2. Foucault pendulums are plagued by unwanted precessional effects, particularly as they get shorter in length. 
The most important of these effects is due to frequency anisotropy and generates an unwanted ellipticity in the 
response. We have a good practical solution to this based on the e/m pusher concept of Schumacher & Tarbet.

3. Frame-dragging is represented mathematically by Lense-Thirring precession. It is a fundamental phenomenon 
of gravity. There are several ways to calculate LT precession – we used GEM here to calculate a value for 
Glasgow, Scotland. 

6. LT precession has been verified experimentally in LEO by two different space missions, but at very high cost.

7. We plan to try to measure it on Earth using a sensitive Foucault pendulum with very high resolution 
instrumentation. This is work in progress, with installation in a laboratory space at the University of Strathclyde 
scheduled to start on 6 December 2021. 

8. The measurement is extremely difficult to make with any hope of accuracy, and the designs summarised here 
have to be supported by suitable signal processing algorithms – work currently in progress.    

33
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