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Introduction

First works contained deep results on the integrability of discrete
dynamical systems are works by G.Julia, P.Fatou and J.Ritt
(although the term "integrability"is not used there). The problem
considered in the above works is the description of pairs of
commuting rational (in particular, polynomial) maps (in the
projective plane)

H(G (x)) = G (H(x)).

The important conclusion follows from the papers of the above
authors: the existence of the commuting maps with suitable
properties implies integrability of the corresponding dynamical
systems (in the sense of the explicit description of dynamics) (see
[2] A.P. Veselov, "Integrable maps", Russian Math. Surveys,
48:5(281) (1991), 3-42).
One can consider another function ψ instead G in the right part of
the above equality. Then we obtain the integrability definition by
R.I. Grigorchuk.



The General Definition

Birkhoff has written: “If we try to formulate the exact definition of
integrability, we see that many definitions are possible, and every of
them is of a specific theoretical interest.”

Let Π be a compact curvilinear trapezoid in the plane R2 such that
the section of Π by a straight line y = constant (if it is not empty)
be a nondegenerate closed interval.

Definition 1. We say that a self-map G of the curvilinear trapezoid
Π is geometrically integrable on G -invariant set A(G ) ⊆ Π if there
exist a self-map ψ of an interval J of the real line R1 and
ψ-invariant set B(ψ) ⊆ J such that the restriction G|A(G) is
semiconjugate with the restriction ψ|B(ψ) by means of a continuous
surjection H : A(G ) → B(ψ), i.e. the following equality holds:

H ◦ G|A(G) = ψ|B(ψ) ◦ H. (1)

The map ψ|B(ψ) is said to be the quotient of G|A(G).
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Examples of integrable maps, I

Example 1. Consider a skew product F : J2 → J2, where J2 is a
closed rectangle in the plane, J2 = J × J ′ (J, J ′ are closed
interval), i.e. F is given by the formula

F (x , y) = (f (x), gx(y)), where gx(y) = g(x , y), (x , y) ∈ J2.

Example 2. Integrable maps arise in investigations of self-similar
groups (see, e.g., [7] N-B. Dang, R. Grigorchuk, and M. Lyubich,
“Self-similar groups and holomorphic dynamics: renormalization,
integrability, and spectrum,” arXiv:2010.00675v2, 74 p. (2021)).
Example 3. The trace map of the form

F (x , y) = (xy , (x − 2)2), where (x , y) ∈ R2,

is integrable on the subset of the first quadrant that coincides with
the exterior of the triangle ∆ = {(x , y) : x , y > 0; x + y 6 4} in
this quadrant; F is topologically conjugate with Lotka-Volterra map
(x , y) → (x(4− x − y), xy).



Examples of integrable maps, II

Example 4. In recent papers (see [4] L.E., "Small C 1-smooth
perturbations of skew products and the partial integrability
property", Applied Math. and Nonlinear Sci. 5 (2), 317–328
(2020); [8] L.E., "Small perturbations of smooth skew products and
Sharkovsky’s theorem", Journ. Differ. Eq. and Applic. 26 (8),
1192–1211 (2020)) maps of the form

Φ(x , y) = (f (x) + µ(x , y), gx(y)), where (x , y) ∈ J2 (2)

were considered under the following conditions:
(iΦ) maps (2) are C 1-smooth on J2;
(iiΦ) Φ(∂J

2) ⊂ ∂J2, where ∂(·) is the boundary of a set;
(iµ) the equality µ(x , y) = 0 holds for every (x , y) ∈ ∂J2;
(if ) f is Ω-stable in the space of C 1-smooth self-maps of the
interval J with the invariant boundary;
(iiµ) the standard C 1-norm of µ satisfies some conditions of
smallness that is connected with the previous condition (if ).



Reference for the Definition of a Local Lamination
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The Definition of the Local One-Dimensional Lamination

Definition 2. Let A be a subset of Π satisfying A =
∪
α
Lα, where α

belongs to an index set; curves Lα are pairwise disjoint. We say
that the family of curves {Lα} has the local structure of a
one-dimensional continuous lamination if for every point x ∈ A
there exist a neighborhood U(x) ⊂ Π and a homeomorphism
χ : U(x) → R2 such that every connected component of the
intersection U(x)

∩
Lα (if it is not empty) is mapping by means of

χ into a straight line such that

χ|U(x)
∩

Lα : U(x)
∩

Lα → χ(U(x)
∩

Lα) is a homeomorphism.

We say that the family {Lα} is a one-dimensional continuous local
lamination (without singularities). The set A is said to be the
support of the above local lamination L, curves Lα are said to be
fibres. If A is a closed set, A ̸= Π, then we say about the
one-dimensional continuous lamination; if A = Π then we say about
the one-dimensional continuous foliation.



The Geometric Criterion of the Integrability

Theorem 1. Let Π be a compact trapezoid in the plane R2, G be a
self-map of Π, A(G ) be a closed G -invariant subset of Π satisfying

pr2(A(G )) = pr2(Π), pr2 : R
2 → Oy is the natural projection. (3)

Let J be a segment of the line R1, ψ be a self-map of J, B(ψ) be a
closed ψ-invariant subset of J.
Then G|A(G) is the geometrically integrable map with the quotient
ψ|B(ψ) by means of a continuous surjection H : A(G ) → B(ψ) such
that for every y ∈ pr2(Π) the map H is an injection on x , if and
only if A(G ) is the support of a continuous invariant lamination for
A(G ) ̸= Π (of a continuous invariant foliation for A(G ) = Π) with
fibres {γx ′}x ′∈B(ψ) that are pairwise disjoint graphs of continuous
functions x = xx ′(y) for every y ∈ pr2(Π). Moreover, the inclusion

G (γx ′) ⊆ γψ(x ′) holds. (4)



The Analytic Criterion of the Integrability

Theorem 2. Let Π be a compact trapezoid in the plane R2, G be
a self-map of Π, A(G ) be a closed G -invariant subset of Π
satisfying (3). Let J be a segment of the line R1, ψ be a self-map
of J, B(ψ) be a closed ψ-invariant subset of J.
Then G|A(G) is the geometrically integrable with the quotient
ψ|B(ψ) by means of a continuous surjection H : A(G ) → B(ψ) such
that for every y ∈ pr2(Π) the map H is injection on x , if and only if
there is a homeomorphism H̃ that maps the set A(G ) on the set
B(ψ)× pr2(Π) and reduces the restriction G|A(G) to the skew
product F|B(ψ)×pr2(Π) satisfying

F|B(ψ)×pr2(Π)(u, v) = (ψ|B(ψ)(u), gx ′(v)), gx ′(v) = g(x ′, v), (5)

where x ′ = pr1 ◦ H̃−1(u, v), pr1 : R2 → Ox is the first natural
projection, H̃−1 : B(ψ)× J ′ → A(G ) is the inverse homeomorphism
for H̃, J ′ = pr2(Π).



Skew Products and Iterations of Integrable Maps

Consider the one-parameter family of skew products of interval
maps Ft : Jt × J ′ → Jt × J ′, where t ∈ J ′, Jt = {x : (x , t) ∈ Π}

Ft(x , y) = (g1
t (x)), g

2
x (y).

Then integrable maps G : Π → Π (G (x , y) = (g1
y (x), g

2
x (y))) and

skew products Ft coincide on a horizontal fibre Jt × {t}:

G (x , t) = Ft(x , t)

Therefore, for every point (x0, y0) ∈ J2 and every n > 1 we have:

Gn(x0, y0) = Fyn−1 ◦ . . . ◦ Fy0(x0, y0).

It means that an autonomous discrete dynamical system generated
by an integrable map can be considered as a nonautonomous
discrete dynamical system generated by the family {Ft}t∈J′ .
There is no a precise boundary between autonomous and
nonautonomous discrete dynamical systems!!!



Extension of the Sharkovsky’s Theorem on the Case of
Integrable Maps

Theorem 3. Let Π be a compact trapezoid in the plane R2, G be
a continuous self-map of Π, A(G ) be a closed G -invariant subset of
Π containing the set Per(G ) and satisfying (3). Let J be a closed
interval of the line R1, ψ be a continuous self-map of J, B(ψ) be a
closed ψ-invariant subset of J. Let G|A(G) be geometrically
integrable with the quotient ψ|B(ψ) by means of a continuous
surjection H : A(G ) → B(ψ) such that for every y ∈ J ′ the map H
be an injection on x , and G contain a periodic point with (least)
period m > 1.
Then G contains also periodic points of every (least) period n,
where n precedes m in the Sharkovsky’s order

1 ≺ 2 ≺ 22 ≺ 23 ≺ . . . ≺ . . . ≺ 22 · 9 ≺ 22 · 7 ≺ 22 · 5 ≺ 22 · 3 ≺ . . .
≺ 2 · 9 ≺ 2 · 7 ≺ 2 · 5 ≺ 2 · 3 ≺ . . . ≺ 9 ≺ 7 ≺ 5 ≺ 3.



The Important Corollary

Corollary. Let Π be a compact trapezoid in the plane R2, G be a
continuous self-map of Π. Let J be a closed interval of the line R1,
ψ be a continuous self-map of J. Let, in addition, G be
geometrically integrable with the quotient ψ by means of a
continuous surjection H : Π → J such that for every y ∈ J ′ the
map H be an injection on x , and G contain a periodic point with
(least) period m > 1.
Then G contains also periodic points of every (least) period n,
where n precedes m in the Sharkovsky’s order

1 ≺ 2 ≺ 22 ≺ 23 ≺ . . . ≺ . . . ≺ 22 · 9 ≺ 22 · 7 ≺ 22 · 5 ≺ 22 · 3 ≺ . . .
≺ 2 · 9 ≺ 2 · 7 ≺ 2 · 5 ≺ 2 · 3 ≺ . . . ≺ 9 ≺ 7 ≺ 5 ≺ 3.



Lorenz Maps Derived from Symmetric Unimodal Maps

Symmetry of a unimodal map f : [a, b] → [a, b] means that for
every x ∈ [a, b] the equality holds

f (x) = f (a+ b − x).

Let a symmetric unimodal map f : [a, b] → [a, b] with the unique
critical point c = (a+ b)/2 be so that f (c) = b.
Define an increasing symmetric Lorenz map φ : [a, b] → [a, b]
setting

φ(x) =

{
f (x), if x ∈ [a, c];
a+ b − f (x), if x ∈ (c , b].

Define a decreasing symmetric Lorenz map ψ : [a, b] → [a, b]
setting

ψ(x) =

{
a+ b − f (x), if x ∈ [a, c];
f (x), if x ∈ (c , b].



Periodic Points Periods of Lorenz Maps Derived from
Symmetric Unimodal Maps

[10] A. Anuš ić , H. Bruin, and J. Č inč , “Topological properties of
Lorenz maps derived from unimodal maps,” J. Diff. Eq. and Applic.
26 (8), Special issue on the occasion of the 82nd birthday of
Oleksandr M. Sharkovsky, 1174–1191 (2020).

Theorem [10]. Symmetric increasing Lorenz maps φ satisfy
Sharkovsky’s Theorem, except for the fixed points.

Decreasing symmetric Lorenz maps ψ satisfy Sharkovsky’s
Theorem, possibly except for periods 2r , r > 1.



Periodic Points of Integrable Maps with Lorenz Quotients, I
(conditions of Theorem 4)

Theorem 4. Let Π be a compact curvilinear trapezoid in the plane
R2, G be a self-map of Π with a continuous second coordinate
function.

Let J be a segment of the line R1, ψ be a Lorenz self-map of J
derived from a symmetric unimodal map.

Let, in addition, G be geometrically integrable with the quotient ψ
by means of a continuous surjection H : Π → J such that for every
y ∈ J ′ the map H be an injection on x , and G contain a periodic
point with (least) period m > 1.



Periodic Points of Integrable Maps with Lorenz Quotients, II
(the conclusion of Theorem 4)

Then G contains also periodic points of every (least) period n,
where n precedes m in the Sharkovsky’s order, except for n = 1, if
ψ is a symmetric increasing Lorenz map;
G contains periodic points of every (least) period n, where n
precedes m in the Sharkovsky’s order, possibly except for periods
2r , r > 1, if ψ is a symmetric decreasing Lorenz map.

If ψ is a symmetric decreasing Lorenz map, and ψ has no periodic
points with periods 2r , r > 1, then G has periodic points with
periods 2r , r > 1, if and only if there is G -invariant curvilinear fibre
γx ′ for x ′ ∈ Fix(ψ), where Fix(·) is the set of fixed points of a map,
that contains periodic points of the map g2

xx′
: J ′ → J ′ with periods

2r , r > 1. Here xx ′ is a function with the graph γx ′ .

[11] L.E. and E. Makhrova, "One-dimensional dynamical systems",
Russian Math. Survey, 76:5 (2021), 81–146.



The Sufficient Condition of the Topological Entropy
Positivity

Proposition 1. Let Π be a compact curvilinear trapezoid in the
plane R2, G : Π → Π be an integrable map satisfying conditions of
Theorem 3 or Theorem 4. Let, in addition, G have a periodic orbit
with a (least) period m ̸∈ {2r}r>0. Then the topological entropy
h(G ) of the map G is positive (i.e. G admits the entropy chaos).

There is the example of a continuous geometrically integrable map
in the plane with a positive topological entropy and the set of
(least) periods of periodic points of the type

τ(G ) = {2r}r>0.

Is there an example of a C 1-smooth geometrically integrable map
with the above properties?


