Graviton mass and Yukawa-like nonlinear correction to the gravitational potential: constraints from stellar orbits around the Galactic Center Predrag Jovanović

Astronomical Observatory Belgrade

Outline of the talk

- Motivation: addressing the unclear situation with graviton mass
- Massive gravity and overview of the observational constraints on:
 - Compton wavelength and mass of graviton
 - Speed of gravity
- f(R) gravity and Yukawa-like correction to the gravitational potential
- Observed stellar orbits around Sgr A* at Galactic Center
- Our results: constraining the graviton mass by analysis of the observed stellar orbits in Yukawa gravity
- The results are obtained in collaboration with:
 - Vesna Borka Jovanović and Duško Borka (Serbia)
 - Alexander F. Zakharov (Russia)
 - Salvatore Capozziello (Italy)
- Conclusions

Graviton: gauge boson of gravitational interaction

- Spin: 2 (tensor boson)
- Electric charge: 0 (neutral)
- General Relativity (GR): graviton is massless and travels along null geodesics (like photon), i.e. at the speed of light *c*
- Theories of massive gravity (indroduced by Fierz & Pauli, 1939, RSPSA, 173, 211): gravitation is propagated by a massive field (i.e. by graviton with small, nonzero mass *m_g*)
- Important predictions (Will, 1998, PRD, 57, 206):

$$v_g^2/c^2 = 1 - m_g^2 c^4/E^2 = 1 - h^2 c^2/(\lambda_g^2 E^2) = 1 - c^2/(f\lambda_g)^2$$

Standard Model of Elementary Particles and Gravity

Constraints on Yukawa-like correction I

• Yukawa-like potential of the form (Sanders, 1984, A&A, 136, L21):

$$U(r) = \frac{G_{\infty}M}{r} \left(1 + \alpha e^{-r/r_0}\right), \quad r_0 = \frac{h}{m_0 c}$$

- Gravitational constant measured locally (G₀) and at infinity (G_∞): G₀ = G_∞ (1 + α)
- If r₀ corresponds to graviton mass m₀ then flat rotation curves could be accounted for α ~ -1
- Additional repulsive (anti-gravity) force
- Experimental constraints on additional Yukawa gravitational interaction between masses m1 and m2 (Adelberger et al. 2009, PrPNP, 62, 102):

$$V(r) = -G_N \frac{m_1 m_2}{r} \left(1 + \alpha e^{-r/\lambda}\right)$$

Constraints on Yukawa-like correction II

- Probability distribution and exclusion regions for the graviton Compton wavelength λ_g (Abbott et al., LIGO Scientific and Virgo Collaborations, 2016, PRL, 116, 221101)
- Yukawa type correction with characteristic length scale λ_g :

$$\varphi(r) = \frac{GM}{r} \left(1 - e^{-r/\lambda_g}\right)$$

• LIGO bound from GW150914:

$$\lambda_g > 1.6 \times 10^{13} \text{ km}; \ m_g \le 1.2 \times 10^{-22} \text{ eV}/c^2$$

- Expected detection limit for a future pulsar timing array with 300 pulsars, observed for 10 years (Lee et al. 2010, ApJ, 722, 1589): $m_g = 5 \times 10^{-23} \text{ eV}$
- Weak lensing bounds (Rana et al. 2018, PLB, 781, 220): $\lambda_g > 6.82 \text{ Mpc}; m_g < 6 \times 10^{-30} \text{ eV}$

Constraints on speed of gravity

• Constraints from the time difference Δt between a GW and an EW from the same event at a distance *D* (Will, 2014, LRR, 17, 4):

$$1 - \frac{v_{\rm g}}{c} = 5 \times 10^{-17} \left(\frac{200 \text{ Mpc}}{D}\right) \left(\frac{\Delta t}{1 \text{ s}}\right)$$

- Arrival and emission time differences Δt_{a} and Δt_{e} : $\Delta t \equiv \Delta t_{a} - (1 + z)\Delta t_{e}$
- For a massive graviton:

$$\frac{v_{\rm g}}{c} \approx 1 - \frac{c^2}{2(\lambda_{\rm g}f)^2} \Rightarrow$$
$$\lambda_{\rm g} > 3 \times 10^{12} \,\mathrm{km} \left(\frac{D}{200 \,\mathrm{Mpc}} \frac{100 \,\mathrm{Hz}}{f}\right)^{\frac{1}{2}} \left(\frac{1}{f\Delta t}\right)^{\frac{1}{2}}$$

GW and γ-rays from a binary neutron star merger in the galaxy NGC 4993 at z ≈ 0.01 and D = 26 Mpc (Abbott et al. 2017, ApJL, 848, L13):

$$\Delta t = \Delta t_{\rm a} = 1.74 \,\mathrm{s} \implies \frac{v_{\rm g}}{c} - 1 \le +7 \times 10^{-16}$$
$$\Delta t = 10 \,\mathrm{s} \implies \frac{v_{\rm g}}{c} - 1 \ge -3 \times 10^{-15}$$

f(R) gravity and Yukawa-like nonlinear correction to the gravitational potential

- Gravitational potential with a Yukawa correction can be obtained in the Newtonian limit of any analytic *f*(*R*) gravity model (Capozziello et al. 2014, PRD, 90, 044052)
- Action for f(R) gravity: $S = \int d^4x \sqrt{-g} \left[f(R) + \mathcal{XL}_m \right], \quad \mathcal{X} = \frac{16\pi G}{c^4}$
- 4th-order field equations: $f'(R)R_{\mu\nu} \frac{1}{2}f(R)g_{\mu\nu} f'(R)_{;\mu\nu} + g_{\mu\nu}\Box f'(R) = \frac{\chi}{2}T_{\mu\nu}$
- Trace: $3\Box f'(R) + f'(R)R 2f(R) = \frac{\chi}{2}T$
- Analytic Taylor expandable function f(R):

$$f(R) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} R^n = f_0 + f_1 R + \frac{f_2}{2} R^2 + \dots \Rightarrow$$

• Metric: $ds^2 = \left[1 + \frac{2\Phi(r)}{c^2}\right] c^2 dt^2 - \left[1 - \frac{2\Psi(r)}{c^2}\right] dr^2 - r^2 d\Omega^2$

• Yukawa-like nonlinear correction to the grav. potential in the weak field limit:

$$\Phi\left(r\right) = -\frac{GM}{(1+\delta)r}\left(1+\delta e^{-\frac{r}{\Lambda}}\right)$$

$$\Psi(r) = \frac{GM}{(1+\delta)r} \left[\left(1 + \frac{r}{\Lambda} \right) \delta e^{-\frac{r}{\Lambda}} - 1 \right]$$

- Λ range of Yukawa interaction
- $\Lambda^2 = -f_1/f_2 \quad \wedge \quad \delta = f_1 1 \quad \bullet \, \delta$ universal constant

Stellar orbits around Sgr A*

The Milky Way

2000

1000

-1000

2000 2002 2004 2006 2008

t (yr)

v_z (km/s)

2001

-0.025

RA-offset (arcsec)

S2 (S02)

-0.05

-0.075

0.1

0.075

0.05

0.025

• New observations: - Gillessen et al. 2017, ApJ, 837, 30 - GRAVITY, 2018, A&A, 615, L15 - Peißker et al. 2020,

Dec.

ApJ, 889, 61 (right)

Simulated orbits of S2 star in Yukawa gravity

Numerical integration of differential equations of motion (Borka, Jovanović, Borka Jovanović, Zakharov, 2013, JCAP, 2013, No. 11, 050): ṙ = v, μr̈ = -∇Φ (r)

$$\Phi(r) = -\frac{GM}{(1+\delta)r} \left(1 + \delta e^{-\frac{r}{\Lambda}}\right) \Rightarrow \text{ nonlinear equation}$$

of motion:
$$\left| \vec{r} = -\frac{G(M+m)}{1+\delta} \left[1 + \delta \left(1 + \frac{r}{\Lambda} \right) e^{-\frac{r}{\Lambda}} \right] \frac{\vec{r}}{r^3} \right|$$

Simulated orbits were then fitted to the astrometric observations of S2 star

Our estimates for graviton mass upper bound

- χ^2 test of goodness of the S2 star orbit fits by Yukawa potential
- Test statistic:

$$\chi^{2} = \sum_{i=1}^{n} \left[\frac{(x_{i}^{o} - x_{i}^{c})^{2}}{\sigma_{xi}^{2} + \sigma_{int}^{2}} + \frac{(y_{i}^{o} - y_{i}^{c})^{2}}{\sigma_{yi}^{2} + \sigma_{int}^{2}} \right] \stackrel{1}{\simeq} 1$$

- Intrinsic dispersion of the data due to their mutually inconsistent uncertainties: $\sigma_{int} = 1.13$ mas
- NDOF: v = 66
- Significance level: $\alpha = 0.1$
- Critical value for χ^2 : $\chi^2_{\nu,\alpha} = 81.08$
- Regions $\lambda < \lambda_x$ where $\chi^2 > \chi^2_{\nu,\alpha}$ can be excluded with 1 $\alpha = 90\%$ probability
- For $\delta = 1$: $\lambda_x = 2900 \pm 50 \,\text{AU} \approx 4.3 \times 10^{11} \,\text{km}$
- For $\delta = 100$: $\lambda_x = 4300 \pm 50 \,\text{AU} \approx 6.4 \times 10^{11} \,\text{km}$
- Corresponding upper bounds for graviton mass (Zakharov, Jovanović, Borka, Borka Jovanović, 2016, JCAP, 2016, No. 05, 045):

$$m_g = h c / \lambda_x \Rightarrow m_g = 2.9 \times 10^{-21} \text{ eV} \land m_g = 1.9 \times 10^{-21} \text{ eV}$$

Our estimates for graviton mass accepted by PDG

• From 2019, our estimate is in *Gauge and Higgs Boson Particle Listings* by PDG (Zyla et al., PDG, 2020, PTEP, 083C01)

Physical Society of Iapan

Gauge & Higgs Boson Particle Listings γ , g, graviton, W

g	raviton				J = 2	
			gravi	iton	MASS	
VALU	E (eV)		DOCUMENT ID		TECN	COMMENT
<6	× 10 ⁻³²	1	CHOUDHURY	04	YUKA	Weak gravitational lensing
• •	• We do not u	se the f	ollowing data f	or av	erages, fi	ts, limits, etc. • • •
<6.8	3×10^{-23}		BERNUS	19	YUKA	Planetary ephemeris INPOP17b
< 1.4	$4 imes 10^{-29}$	2	DESAI	18	YUKA	Gal cluster Abell 1689
<5	$ imes$ 10 $^{-30}$	3	GUPTA	18	YUKA	SPT-SZ
<3	imes 10 ⁻³⁰	3	GUPTA	18	YUKA	Planck all-sky SZ
< 1.3	3×10^{-29}	3	GUPTA	18	YUKA	redMaPPer SDSS-DR8
<6	$\times 10^{-30}$	4	RANA	18	YUKA	Weak lensing in massive clusters
<8	$\times 10^{-30}$	5	RANA	18	YUKA	SZ effect in massive clusters
<7	imes 10 ⁻²³	6	ABBOTT	17	DISP	Combined dispersion limit from three BH mergers
<1.2	2×10^{-22}	6	ABBOTT	16	DISP	Combined dispersion limit from
<2.9	$9 imes 10^{-21}$	7	ZAKHAROV	16	YUKA	S2 star orbit
<5	$ imes 10^{-23}$	ö	BRITO	13		Spinning black holes bounds
<4	imes 10 ⁻²⁵	9	BASKARAN	80		Graviton phase velocity fluctua- tions
<6	imes 10 ⁻³²	10	GRUZINOV	05	YUKA	Solar System observations
<9.0	0×10^{-34}	11	GERSHTEIN	04		From Ω_{tot} value assuming RTG
>6	$ imes$ 10 $^{-34}$	12	DVALI	03		Horizon scales
<8	imes 10 ⁻²⁰	13,14	FINN	02	DISP	Binary pulsar orbital period de-
		14,15	DAMOUR	91		Crease Binary pulsar PSR 1913+16
<7	imes 10 ⁻²³		TALMADGE	88	YUKA	Solar system planetary astrometric
< 2 :	$\times 10^{-29} h_0^{-1}$		GOLDHABER	74		Rich clusters
<7	imes 10 ⁻²⁸		HARE	73		Galaxy
<8	imes 10 ⁴		HARE	73		2γ decay

graviton REFERENCES

RROTT	16	PRI 116 061102	RP Abbott et al	(LIGO and Virgo Collabs.)
ZAKHAROV	16	JCAP 1605 045	A.F. Zakharov et al.	(
3RH O	13	PR D88 023514	K. Brito, V. Cardoso,	P. Pani (LISB, MISS, HSCA+)

Possible improvements by future observations I

- Expected bounds for graviton mass if the GR predictions for orbital precession:
- $\Delta \varphi_{GR}^{rad} \approx \frac{6\pi GM}{c^2 a(1-e^2)} \text{ will be confirmed by the future observations}$ Orbital precession in Yukawa gravity: $\Delta \varphi_Y^{rad} \approx \frac{\pi \delta \sqrt{1-e^2}}{1+\delta} \frac{a^2}{\Lambda^2}, \quad a \ll \Lambda$

$$\Delta \varphi_Y = \Delta \varphi_{GR} \stackrel{\delta=1}{\Rightarrow} \left[\Lambda \approx \frac{c}{2} \sqrt{\frac{(a\sqrt{1-e^2})^3}{3GM}} \approx \sqrt{\frac{(a\sqrt{1-e^2})^3}{6R_S}} \approx \frac{T}{T_0} \sqrt{\frac{(a_0\sqrt{1-e^2})^3}{6R_S}}, \right]$$

where T_0 and a_0 correspond to a selected orbit (e.g. of S2 star)

Orbits in GR were simulated using PPN equation of motion for two-body problem:

• Relative errors: $\frac{\Delta \Lambda}{\lambda} = \frac{\Delta m_g}{R} \approx \pm \frac{3}{4} \left(\frac{|\Delta a|}{2} + \frac{e |\Delta e|}{2} + \frac{1}{4} \frac{|\Delta M|}{2} \right)$

				Λm_g	$2 \setminus$	a	1	$-e^2$		$S \Lambda$	A)		
Star	T_{Kep}	$\Delta \varphi$	Δs	$\Lambda\pm\Delta\Lambda$	$m_g \pm \Delta m_g$	R.E.	Star	T_{Kep}	$\Delta \varphi$	Δs	$\Lambda\pm\Delta\Lambda$	$m_g \pm \Delta m_g$	R.E.
name	(yr)	(″)	(mas)	(AU)	(10^{-24} eV)	(%)	name	(yr)	(")	(mas)	(AU)	(10^{-24} eV)	(%)
S1	168.4	48.2	0.22	369952.9 ± 43820.4	22.4 ± 2.7	11.8	S39	82.6	364.5	1.26	56824.5 ± 6638.4	145.8 ± 17.0	11.7
S2	16.3	722.1	0.83	15125.5 ± 884.7	547.9 ± 32.0	5.8	S42	339.7	30.8	0.22	736342.1 ± 312551.0	11.3 ± 4.8	42.4
S4	78.2	65.5	0.16	200418.3 ± 11191.1	41.4 ± 2.3	5.6	S54	482.2	81.5	0.90	422181.5 ± 692183.8	19.6 ± 32.2	164.0
S6	195.5	102.4	0.60	226607.6 ± 8807.8	36.6 ± 1.4	3.9	S55	13.0	382.8	0.34	21721.6 ± 1465.5	381.5 ± 25.7	6.7
$\mathbf{S8}$	94.4	138.0	0.49	125957.9 ± 8420.6	65.8 ± 4.4	6.7	S60	88.6	105.5	0.34	149149.2 ± 11131.0	55.6 ± 4.1	7.5
$\mathbf{S9}$	52.2	124.3	0.27	101193.1 ± 9289.8	81.9 ± 7.5	9.2	S66	675.3	13.4	0.11	1933974.1 ± 269754.5	4.3 ± 0.6	13.9
S12	59.9	314.6	0.86	54047.1 ± 3026.3	153.3 ± 8.6	5.6	S67	438.3	19.3	0.14	1188222.1 ± 116748.7	7.0 ± 0.7	9.8
S13	49.8	91.6	0.17	124334.4 ± 5855.1	66.7 ± 3.1	4.7	S71	352.1	106.2	0.95	295890.2 ± 56006.2	28.0 ± 5.3	18.9
S14	56.2	1465.9	4.02	16508.7 ± 2802.9	502.0 ± 85.2	17.0	S83	667.2	15.3	0.15	1737943.9 ± 477698.2	4.8 ± 1.3	27.5
S17	77.9	66.1	0.16	198588.4 ± 16771.2	41.7 ± 3.5	8.4	$\mathbf{S85}$	3619.1	11.0	0.44	5195117.0 ± 8106789.5	1.6 ± 2.5	156.0
S18	42.6	107.1	0.18	102263.2 ± 5784.8	81.0 ± 4.6	5.7	S87	1663.8	7.6	0.12	4641782.4 ± 619016.2	1.8 ± 0.2	13.3
S19	137.6	87.1	0.38	214568.1 ± 89676.6	38.6 ± 16.1	41.8	$\mathbf{S89}$	412.3	31.0	0.27	806547.1 ± 140413.3	10.3 ± 1.8	17.4
S21	37.6	217.4	0.41	56500.3 ± 4881.5	146.7 ± 12.7	8.6	S91	973.6	11.4	0.14	2626592.1 ± 322729.8	3.2 ± 0.4	12.3
S22	550.0	19.0	0.17	1347095.9 ± 580678.1	6.2 ± 2.7	43.1	S96	673.2	13.6	0.12	1907722.2 ± 189196.9	4.3 ± 0.4	9.9
S23	46.7	114.1	0.22	102079.9 ± 28448.6	81.2 ± 22.6	27.9	S97	1296.3	9.7	0.15	3407955.4 ± 1361276.1	2.4 ± 1.0	39.9
S24	336.5	107.5	0.93	286723.3 ± 41927.1	28.9 ± 4.2	14.6	S145	434.8	23.6	0.19	1016130.7 ± 535791.9	8.2 ± 4.3	52.7
S29	102.7	98.5	0.35	169074.0 ± 37807.8	49.0 ± 11.0	22.4	S175	97.7	1812.0	7.23	18570.1 ± 5168.9	446.3 ± 124.2	27.8
S31	110.4	63.3	0.21	244347.7 ± 17733.9	33.9 ± 2.5	7.3	R34	893.3	18.6	0.27	1741793.7 ± 558192.6	4.8 ± 1.5	32.0
S33	195.3	47.9	0.25	400731.7 ± 75407.3	20.7 ± 3.9	18.8	R44	2825.3	5.5	0.13	7740489.4 ± 5361256.0	1.1 ± 0.7	69.3
S38	19.5	427.5	0.53	24533.9 ± 1005.0	$ 337.8 \pm 13.8 $	4.1					·		

• Due to linear dependence of Λ on orbital period T, monitoring of a bright star with $T \approx 50$ yr and small eccentricity e could provide a constraint of: $m_g < 5 \times 10^{-23}$ eV

- In the case of S2 star, this estimate could reach: $m_g \approx 5.48 \times 10^{-22} \text{ eV}$
- Bounds from measured orbital precession of the Solar System planets (Will, 2018, CQG, 35, 17LT01): $m_g < 1 \times 10^{-23}$ eV

Influence of bulk distribution of matter

• Orbital precession of S2 star in Yukawa gravity for different mass densities of bulk distribution of matter which decribes stellar cluster, interstellar gas and dark matter, contained within some radius r around SMBH: $M(r) = M_{BH} + M_{ext}(r)$

• Double power-law mass density profile (where $r_0 = 10'' \land \alpha = 1.4$ for S2 star):

$$\rho(r) = \rho_0 \left(\frac{r}{r_0}\right)^{-\alpha}, \ \alpha = \begin{cases} 2.0 \pm 0.1, & r \ge r_0\\ 1.4 \pm 0.1, & r < r_0 \end{cases} \Rightarrow M_{ext}(r) = \frac{4\pi\rho_0 r_0^{\alpha}}{3-\alpha} r^{3-\alpha}$$

Table 1 The values of parameter λ (in AU) for different combinations of 3 values of parameter δ the 5 values of the mass density distribution of extended matter ρ_0

	ρ_0 (in 10	$0^8 M_{\odot} { m pc}^{-3}$)		
	0	2	4	6	8
$\delta = 1$	15125	3130	2080	1597	1302
$\delta = 10$	20395	4425	3015	2370	1978
$\delta = 100$	21285	4640	3175	2500	2090

Table 2 The graviton mass (m_g) estimates corresponding to all mass density distributions presented in Table 1, in the case when Yukawa gravity parameter $\delta = 1$

	$ ho_0 \ ({ m in} \ 10^8 M_\odot { m pc}^{-3})$	0	2	4	6	8
5	$m_g \ ({\rm in} \ 10^{-21} \ {\rm eV})$	0.5	2.6	4.0	5.2	6.4

(Jovanović, Borka, Borka Jovanović, Zakharov, 2021, EPJD, 75, 145)

- S2 star precession per orbital period in (λ , δ) parameter space for mass density of extended matter: $\rho_0 = 2 \times 10^8 M_{\odot} \text{pc}^{-3}$
- White dashed line: the case when the precession is the same as in GR (0°.18)

Conclusions

- Analysis of the stellar orbits around Sgr A* in the frame of a massive gravity with Yukawa-like nonlinear correction to the gravitational potential represents a powerful tool for constraining the graviton mass and testing the GR predictions
- Fitting the simulated stellar orbits in Yukawa potential to the observed orbit of S2 star showed that the range of Yukawa interaction Λ is on the order of several thousand astronomical units (AU)
- Assuming that Λ corresponds to the Compton wavelength of graviton λ_g , we estimated the upper bound for its mass to: $m_g \leq 2.9 \times 10^{-21} \text{ eV}$
- Our estimate for graviton mass upper bound is consistent with the LIGO results, but obtained in an independent way, and since 2019. it is included in the *Gauge and Higgs Boson Particle Listings* published by PDG
- Range of Yukawa gravity Λ can be constrained in such a way to induce the same orbital precession of stellar orbits as in GR
- Monitoring of a bright S-star with orbital period of ≈ 50 years and small eccentricity by the future telescopes could provide an opportunity to constrain the upper bound for graviton mass to: $m_g < 5 \times 10^{-23}$ eV
- Estimates for graviton mass may be slightly larger for larger mass density distributions of the extended matter, but are still in the expected interval

References

- D. Borka, P. Jovanović, V. Borka Jovanović, A. F. Zakharov, *Constraining the range of Yukawa gravity interaction from S2 star orbits*, Journal of Cosmology and Astroparticle Physics, Vol. 2013, No. 11 (2013), p. 050.
- S. Capozziello, D. Borka, P. Jovanović, V. Borka Jovanović, *Constraining extended gravity models by S2 star orbits around the Galactic Centre*, Physical Review D, 90 (2014), p. 044052.
- A. F. Zakharov, P. Jovanović, D. Borka, V. Borka Jovanović, *Constraining the range of Yukawa gravity interaction from S2 star orbits II: bounds on graviton mass*, Journal of Cosmology and Astroparticle Physics, Vol. 2016, No. 05 (2016), p. 045.
- A. F. Zakharov, P. Jovanović, D. Borka, V. Borka Jovanović, *Constraining the range of Yukawa gravity interaction from S2 star orbits III: improvement expectations for graviton mass bounds*, Journal of Cosmology and Astroparticle Physics, Vol. 2018, No. 04 (2018), p. 050.
- P. Jovanović, D. Borka, V. Borka Jovanović, A. F. Zakharov, *Influence of bulk mass distribution on orbital precession of S2 star in Yukawa gravity*, European Physical Journal D 75:145, (2021), pp. 1-7.

Thank you for your attention!