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Synergy of topology and nonlinearity either inherently present or activated in 
photonic systems opens new gates for fundamental science and discoveries of 
new functionalities of the devices [1]. We are challenged by the sensitivity of 
the band topology to the modulation instability [2] and vice versa, related 
bulk-edge correspondence and nonlinearity driven topological phase 
transitions in photonic lattices [3]. Here, our first findings in this emerging field 
will be briefly presented. 
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Primary goal: 

Probing the band topology by the modulation instability (MI). 
 
Founded on the MI underlying mechanism: the energy dependent parametric gain  

which can enable selective population of a single Bloch band starting from a simple 
plane wave initial state. 

 
Peculiarity: band topological properties measurement require absence of interband mixing in the system   

 
Previous approaches [4]: Bloch band tomography  

                                                           bulk-edge correspondence  

 
 
Our approach: nonlinear dynamics of Bloch waves and related MI  
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I Brief introduction in topological 2D lattices [5] 
 
                             

Topological band structures are a ubiquitous property of waves inside a periodic medium, regardless of the 
classical or quantum nature of the waves.  
 
Topological photonics is a rapidly emerging field of research in which geometrical and topological ideas are 
exploited to design and control the behavior of light.  
 
Breakthrough   Electromagnetic waves in 2D spatially periodic devices embedding time-reversal-breaking 
magneto-optical elements  providing  the photonic bands with non-trivial topological invariants [6]. 

Topological phase transitions  band gap opening after the PT symmetry breaking  at Dirac points  
nonzero Berry curvature  and Chern number [5,6] 
 
 
 

References 
[5] T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J.Simon, O.Zilberberg, I. Carusotto, Rev. Mod. Phys. 91, 015006 (2019). 
[6] F. D. M. Haldane, S. Raghu, Physical Review Letters 100, 013904 (2008). S. Raghu, F. D. M. Haldane Physical Revview A 78,033834 (2008) 
[7] J. K. Asbóth, L. Oroszlány, A. Pályi, A short course on topological insulators (2016). 
 

The relationship: bulk topological invariant (Chern number) and the number of localized edge modes  
the bulk-edge  correspondence [7]  
 
The sum of the Chern numbers associated with the occupied bulk bands is equal to the number of edge 
modes contributing to the edge current  
 
 



p- flux square lattice [2,8,9] 

𝐻 𝐿 𝑘 = 𝑑 𝑘 ∙ 𝜎  

𝑑𝑧 = ∆ + 2𝐽2 cos 𝑘𝑥 − cos 𝑘𝑦 , 

𝑑𝑥 + 𝑖𝑑𝑦 = 𝐽1 𝑒−
𝑖𝜋
4 1 + 𝑒𝑖(𝑘𝑦−𝑘𝑥) + 𝑒

𝑖𝜋
4 (𝑒−𝑖𝑘𝑥 + 𝑒𝑖𝑘𝑦)  
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Fig. 1  

(1) 

(3) 

 -detuning between sublattices 
J1,2 – NN and NNN hopping strengths 



Fig2. (a) J2=J1/ 2 , =0 (max flatness) 𝐹𝑖𝑔. 2 𝑏  𝐽1 = 1, 𝐽2 =
𝐽1

2
, Δ=2 2𝐽1 

* Checking done for:  the Bernevig–Hughes–Zhang Model (BHZ), Haldane model 



(4) 

Berry curvature: 

Band topological invariant – Chern number: 

𝒏  – a real unit polarization vector on the surface of Bloch sphere [10]: 

Quantized C± change only at topological transitions where the band gap closes 
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Fig. 3 Linear bands:  

(5) 

(6) 

(7) 

ℱ± = ±𝒅/ 𝒅 3 
∆/𝐽1=±2 2 

𝐽2=𝐽1/ 2 



II MI of NL Bloch waves  
          (a)  The short time dynamics  
                           - preparation of conditions for intra-band mixing  

𝑖𝜕𝑡|𝜓(𝑟 , 𝑡) >= (𝐻 𝐿 + 𝐻 𝑁𝐿)|𝜓(𝑟 , 𝑡) > 

𝐻 𝑁𝐿 = Γ𝑑𝑖𝑎𝑔[𝑓 |𝜓𝑎(𝑟 )|
2 , 𝑓 |𝜓𝑏(𝑟 )|

2 ] 

LSA:  nl Bloch mode  (steady state) + small perturbation  

Linearized evolution equation for perturbations  

(8) 

(11) 

𝑖𝜕𝑡 + 𝐸 |𝛿𝜙 𝒓, 𝑡  =𝐻 𝐿|𝛿𝜙 𝒓, 𝑡  +Γ 𝑓 |𝜙𝑗|
2 + 𝑓′ |𝜙𝑗|

2 |𝜙𝑗|
2 𝛿𝜙𝑗 𝒓, 𝑡 + 𝑓′ |𝜙𝑗|

2 |𝜙𝑗|
2𝛿𝜙∗

𝑗
𝒓, 𝑡 |𝑗 >𝑗=𝑎,𝑏  

(9) 

(10) 

*Cubic and saturable nl are considered:  f(I)=I,  

 
The linear Bloch wave (BW) can be continued as a nonlinear BW  
 
Satisfying                                                      with energy 𝐸𝑁𝐿=Δ − 4𝐽2 + Γ𝑓 𝐼0  
 
 
 

|𝜙(𝒓) =( 𝐼0,0)
𝑇
𝑒𝑖𝜋𝑥  

 (𝐻 𝐿 + 𝐻 𝑁𝐿)|𝜙 >= 𝐸𝑁𝐿 |𝜙 > 



Particle – hole symmetry :  
Eigenvalues l occur in complex conjugate pairs; 
 
                             real l -- stable perturbation modes,  
                             Pure Imaginary – exponential instability, 
                             complex – oscillatory instability 

The eigenvalue problem of small perturbations: 

Assumption for steady state : 
 
+ Fourier transformation 

(12) 

(13) 



Example: weak nonlinearity limit G<<1, nl Bloch wave  

𝑘 = 0 

a 4-fold degeneracy when 

𝑚𝑒𝑓𝑓 = Δ − 4𝐽2 

 Γ𝐼0 = −𝑚𝑒𝑓𝑓, 

Fig. 4  

(14) 

(15) 

-Critical (stable) line at  Γ𝐼0/2 = −𝑚𝑒𝑓𝑓: nl energy shift on a-sublattice closes the band gap and 

                                              separates the region of exponential from complex instability (Fig. 4) 
 



(b) The high symmetry points of the Brillouin zone 

Stability window of BWs at a critical nonlinearity strength   
 
The critical strength coincides with the bifurcation of a nonlinear Dirac cone [11]; 
 

 
Brief note: The effective Dirac model is obtained as a long wavelength expansion of Eq. (1) 
 

𝑘 = 𝑘0 + 𝑝 , 𝑝 ≪ 1  

𝐻 𝐷 = 𝐽1 2 𝑝𝑥𝜎 𝑦 − 𝑝𝑦𝜎 𝑥 + (𝑚𝑒𝑓𝑓 + 𝐽2 𝑝𝑥
2 + 𝑝𝑦

2 )𝜎 𝑧 

𝐶± = ±
1

2
(1 − 𝑠𝑔𝑛 𝐽2𝑚𝑒𝑓𝑓 ) 

Γ𝐼0/2 = −𝑚𝑒𝑓𝑓 

Last term is required to reproduce the correct Chern number and main features of perturbation spectrum: 
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(16) 

(17) 

Finding:   additional symmetry-breaking nonlinear Bloch waves emerge which  stability is sensitive to the 
band topology.  



Fig. 5   Vicinity of critical line:  nontrivial (blue, meff=-1/2) and trivial (red, meff=1/2); Dots – special points in spectra. 
 

(a) I – symmetry breaking bifurcation |p|=0 ( nl Dirac cone); new mode emerges in both phases  
                nontrivial phase –wave vectors perpendicular to the direction of the pseudospin remain stable; 
                trivial phase -- instability for all angles 

(b)  II- nontrivial phase - additional bifurcation appears (C±=±1, |Δ/J1|<2 2) at |p|= 4 − Δ/J2, 𝑑z(p)=0 + 
linear band crossing (loop) in both phases 
 
(c )  merging of new branches with the lower band (nl provoked) gapless spectrum (nontrivial phase) vs. 
gapped (trivial phase) 
 
 AND:  Trivial phase: pt modes maintain a similar polarization to the nl Bloch wave  efficient wave mixing 

Nontrivial phase: poor overlapping of the nl Bloch wave and pt modes reduced nl mixing  
 
 MI  depends on eigenvalue dispersion and is sensitive to band topology  



(c ) The long time dynamics: provided intra-band mixing 

 
                               
Launched:       nl Bloch wave (I0), 

                               

𝑃𝑟 =
Ρ2

2𝑁
 ( 𝜓𝑎 𝑟 4 + 𝜓𝑏 𝑟 4)

𝑟

−1

 

 
Observables: -  participation numbers Pr and Pk 

                          
 
 
-the field polarization direction:   
 
Relative population imbalance: 
 
 
 
displays singularities sensitive to band topology ( in the polarization azimuth) 
 
                      ~ Chern number  
 
 
Averaged field polarization describes a mixed state with  

𝑘 0 = (𝜋, 0) + random pt (averaging – 100 initial pts) 

(16) 

(17) 

(18) 

-purity gap:  

(19) 

(20) 

(32x32 cells) 



MI (exponential type) in focusing nl regime: =0, G=-1.25 

Hamiltonians, total the configuration and Fourier space 
intensities 
 

 
 

Fig. 6  

Considered: exponential focusing, exponential defocusing. 
                     oscillatory defocusing regimes of instability 

nl – wave mixing 

Soliton-like modes 



MI (exponentially type) in defocusing  nl regime: =0, G=2.5 
 

Fig. 7  

Absence of soliton-like modes 

nl – wave mixing 



MI in the oscillatory instability regime: =2, G=2.5 
 

Fig. 8 
nl – wave mixing 

Absence of stationary soliton-like structures 



Dynamics of the upper band population in different regimes  𝑑𝑘 𝑢+ 𝑘 𝜓 𝑘, 𝑡
2

 

Fig. 10  

Intra-band wave mixing triggered by MI (weak nonlinearity or/and gapped bands)  
 
Inter-band mixing (NL, gap width dependent) 



Purity gap emergence vs. field polarization 
 
Trivial and nontrivial phases differ by field polarization : 
Sum of charges of phase singularities of the polarization azimuth~ C 
(b) Trivial , (c ) nontrivial phase  Trivial C=0, nontrivial C=1. 
 

Fig. 9  Purity gap and field polarization at t=40J1, G=-2 

(b) Trivial phase (=-3J1 ), (c ) nontrivial phase (=0)  

𝑛 𝜓(𝒌)  



III CONCLUSIONS: 
 
 
 
MI is sensitive to the geometrical properties of the Bloch waves, 
i.e. their polarization 
 
The long time instability dynamics can be used to measure the 
band Chern number 

The topological properties of the band are imprinted on the MI at small 
and large time and nonlinearity scales. 

   
In progress: 
Nonlinear wave mixing and relaxation (prethermalization/thermalization); 
Can MI probe the band topology of Floquet lattices? 
 
 

           


