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Main results

• Any quantum dynamical system is completely
integrable.

• Moreover, it is unitary equivalent to a set of
classical noninteracting harmonic oscillators

• Explicit integrability wide classes of classical and
quantum multidimensional PDE by using wave
operators.
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Harmonic oscillators

Definition. Complexified system of classical harmonic
oscillators

(L2(X , µ), ω, Vt = e−itω)

,
ω : X → R. If f ∈ L2(X , µ) then Vtf (x) = e−itωx f (x).

Equations of motion. ϕx = e−itωx f (x) = qx + ipx

i ϕ̇x = ωxϕx

q̇x = ωxpx , ṗx = −ωxqx
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Harmonic oscillators

Example.

X = R, µ(x) =
N∑
j=1

cjδ(x − xj)

Then L2(X , µ) = CN and for f = (f!, ..., fN) ∈ CN one has

Vtej = e−itωjej
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Quantum dynamical systems

Quantum dynamical system: (H, Ut).

Schrödinger equation (ψ = Ut ψ0 = e−itH ψ0)

i
∂ψ

∂t
= Hψ
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Integrability of Quantum Dynamical Systems

Theorem. Let (H, Ut) be q quantum dynamical systems.
Then there exists a complexified system of classical harmonic
oscillators (L2(X , µ), ω, Vt = e−itω) and a unitary map
W : H→ L2(X , µ) such that

Ut = W ∗ Vt W

Also one has on an appropriate domain

H = W ∗MωW

Integrability in category of Hilbert spaces.
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Linear and non-linear Schrodinger equations
Linear Schrodinger equation includes ”nonlinear Schrodinger
equations” if one uses the second quantization.
Let H = F(L2(Rn)) Fock space and
[ψ(x), ψ̂∗(y)] = δ(x − y), x , y ∈ Rn.

H = −
∫
Rn

ψ̂∗(x)∆ψ̂(x) dx+
1

2

∫
ψ̂∗(x)ψ̂∗(y)v(x−y)ψ̂(x)ψ̂(y)

then ψ̂(x , t) = e itHψ̂(x)e−itH satisfies the nonlinear
Schrodinger equation

i∂tψ̂(x , t) = −∆ψ̂(x , t) +

∫
ψ̂∗(y)v(x − y)ψ̂(x)ψ̂(y)dy

ψ̂(x , t) = W ∗e itωW ψ̂(x)W ∗e−itωW
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Historical remarks

Integrable systems: Newton, Euler, Lagrange,..., Poincare,...
Liouvilles theorem: If a Hamiltonian system with n degrees
of freedom has n independent integrals in involution, then
itcan be integrated in quadratures. Canonical transform.

KdW, Gardner, Green, Kruskal, Miura,... Zakharov, Novikov,...

Quantum integrable systems: Bethe, Yang, Baxter,...
Faddeev, Aref’eva-Korepin,...

Kozlov, Treschev,...

Vladimirov-I.V., ...
Accardi, Khrennikov, M. Ivanov
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Finite dimensional case

We first consider the case of a finite-dimensional Hilbert space

H = Cn

Theorem 1. The Schrödinger equation i ψ̇ = Hψ, where H is
a Hermitian operator in Cn, ψ = ψ(t) ∈ Cn, regarded as a
classical Hamiltonian system, with a symplectic structure
obtained by decomplexification the Hilbert space, has n
independent integrals in involution.
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Proof of Theorem 1;1/2
Let ωj , j = 1, ..., n be the eigenvalues of the operator H .
By diagonalizing the matrix H

i ϕ̇j = ωjϕj , ϕj = ϕj(t) ∈ C, j = 1, ..., n.

Passing to the real and imaginary parts of the function
ϕj(t) = (qj(t) + ipj(t))/

√
2,

q̇j = ωjpj , ṗj = −ωjqj .

with the Hamiltonian

Hosc =
n∑

j=1

1

2
ωj(p

2
j + q2

j ) = (ψ,Hψ).
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Proof of Theorem 1; 2/2

Define

Ij(ϕ) = |ϕj |2 =
1

2
(p2j + q2

j ), j = 1, ..., n.

The functions Ij are integrals of motion, independent and in
involution, {Ij , Im} = 0, j ,m = 1, ..., n.. The corresponding
level manifold has the form of an n-dimensional torus.
Note that the Hamiltonian is a linear combination of the
integrals of motion:

Hosc =
n∑

j=1

ωj Ij .

V.V. Kozlov (nondegenerate spectrum)
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Complete integrability of quantum dynamical

systems

The Schrödinger equation is completely integrable in the sense
that its solutions are unitary equivalent to the complexified
solutions of the Hamilton equations for a family of classical
harmonic non-interacting oscillators.
The Schrödinger equation after the unitary transformation is
rewritten in the form of equations for the family of classical
harmonic oscillators. This is a consequence of the spectral
theorem.
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Theorem 2.

Let H be a separable Hilbert space and H a self-adjoint
operator with a dense domain D(H) ⊂ H. Then the
Schrödinger equation

i
∂

∂t
ψ(t) = Hψ(t), ψ(t) ∈ D(H), t ∈ R

completely integrable in the sense that this equation is
unitary equivalent to the complexified system of
equations for a family of classical non-interacting
harmonic oscillators.
There exists a set of non-trivial integrals of motion for
the arbitrary Schrödinger equation.
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Proof of Theorem 2; 1/2

The solution of the Cauchy problem for the Schrödinger
equation

i
∂

∂t
ψ(t) = Hψ(t), ψ(0) = ψ0 ∈ D(H)

by the Stone theorem has the form ψ(t) = Utψ0, where
Ut = e−itH is the group of unitary operators, t ∈ R.
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Proof of Theorem 2; 2/2

Then, by the spectral theorem there exists a measurable space
(X ,Σ) with σ-finite measure µ, and a measurable finite a.e.
function ω : X → R such that there is a unitary transformation
W : H→ L2(X , µ) such that Ut = W ∗U

(0)
t W where

U
(0)
t = e−itMω , where Mω is the operator of multiplication by

the function ω. On the corresponding domain one has

H = W ∗MωW

.
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Proof of Theorem 2; 2/2
The initial Schrödinger equation in H goes over under the
unitary transformation of W into the Schrödinger equation in
L2(X , µ) of the form

i
∂

∂t
ϕx(t) = ωxϕx(t), x ∈ X

Passing to the real and imaginary parts of the function

ϕx(t) =
1√
2

(qx(t) + ipx(t)),

this Schrodinger equation is rewritten in the form of equations
of the family of classical harmonic oscillators

q̇x = ωxpx , ṗx = −ωxqx , x ∈ X .
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Hamiltonian

These equations can be obtained from the Hamiltonian

Hosc =

∫
x

Hxdµ, Hx =
1

2
ωx(p2x + q2

x),

by using the relation

δHosc =

∫
X

δHxdµ =

∫
X

(q̇xδpx − ṗxδqx)dµ.

Note also that one has Hosc = (ωϕ, ϕ)L2 = (Hψ, ψ)H.
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Integrals of motion.

Lemma 1. Let I : L2(X )→ R be an integral of motion

for the dynamics U
(0)
t , I (U

(0)
t ϕ) = I (ϕ), ϕ ∈ L2(X ). Then

J : H→ R, where J(ψ) = I (Wψ), ψ ∈ H, is the integral
of motion for dynamics Ut , J(Utψ) = J(ψ).

Integrals of motion for the dynamics U
(0)
t :

Iγ = Iγ(ϕ) =

∫
X

γx |ϕx |2dµ =

∫
X

γx
1

2
(p2x + q2

x)dµ,

for any γ ∈ L∞(X ). Then, by Lemma 1, one gets an
integral of motion Jγ for dynamics Ut. The theorem is
proved.
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Where is quantum chaos?

An arbitrary quantum dynamics is unitary equivalent to a
system of classical harmonic oscillators. So, what about
quantum chaos?

By the Liouville-Arnold theorem the dynamics the n-harmonic
oscillators is reduced to the motion on the n-dimensional torus
T n with equations of motions

ż = λi , i = 1, ...n

If λi are linearly independent with integer coefficients then the
flow is ergodic, i.e. one has chaos.
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Remark.
Consider an example when X = R and the Hilbert space is
L2(R, dµ), where µ is a Borel measure on the line. Any
measure µ on R admits a unique expansion in the sum of
three measures µ = µpp + µac + µs , where µpp is purely
pointwise, µac is absolutely continuous with respect to the
Lebesgue measure and µs is continuous and singular with
respect to Lebesgue measure, and we have respectively

L2(R, dµ) = L2(R, dµpp)⊕ L2(R, dµac)⊕ L2(R, dµs).

A purely point measure has the form µpp =
∑

cjδsj , where
cj > 0, the sum over j contains a finite or infinite number of
terms, sj real numbers and δsj Dirac delta function. Then we
have ∫

|ϕx |2 dµpp =
∑
j

cj |ϕsj |2.
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Examples

• Free particle. Fourier integral/series.

• Quantum oscillator. Coherent states.
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On integrability of classical dynamical systems

The complete integrability of the Liouville equation in
Koopman’s approach to classical mechanics and in general any
dynamical system is proved in a similar way. Let (M ,Σ, α, τt)
be a dynamical system, where (M ,Σ) measurable space with
measure α and τt , t ∈ R group of measure-preserving
transformations M . Then the Koopman transform defines a
group of unitary operators Ut in L2(M , α),

(Utf )(m) = f (τt(m)), f ∈ L2(M , α)

Repeating the proof of Theorem 2, we see that the group Ut is
unitary equivalent to the family of harmonic oscillators and, in
this sense, any dynamical system is completely integrable in
category of Hilbert spaces.
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Complexity
Compare the effectiveness (or complexity) of complete
integrability in the above sense with the
efficiency/complexity of constructing solutions of
Hamiltonian systems that are completely integrable in
the sense of Liouville.

Apparently, the change of variables in the Liouville
theorem, which reduces the initial dynamics to
action-angle variables on a level manifold, is an
analogue of the unitary transformation in the spectral
theorem, which reduces the original dynamics to a set
of harmonic oscillators.

Open quantum systems?
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Wave operators and

integrability of classical dynamical systems

The inverse scattering method, based on the Lax
representation, is used to prove the complete integrability of
some nonlinear equations, usually on a straight line or on a
plane.

Here we use of direct scattering theory methods to prove the
complete integrability and the construction of integrals of
motion for classical and quantum systems. This will provide a
constructive example to the above general result on the
complete integrability of arbitrary quantum and classical
systems.
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Wave operators and integrals of motion

Let φ(t) and φ0(t) be a pair of groups of automorphisms of
the phase space in the classical case or groups of unitary
transformations in quantum case, t ∈ R. Suppose there exist
the limits, called wave operators,
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Wave operators and integrals of motion

lim
t→±∞

φ(−t)φ0(t) = Ω±

The wave operators have the properties of intertwining
operators; on the appropriate domain, we have

φ(t)Ω± = Ω±φ0(t)

Thus, the interacting dynamics φ(t) is reduced to ”free”
φ0(t). The following form of Lemma 1 holds
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Lemma 1a.

Let I0(z) be the integral of motion for the dynamics of φ0(t),
i.e. I0(φ0(t)z) = I0(z), here z is a phase space point or a
Hilbert space vector.
Then I (z) = I0(Ω−1± z) is the integral of motion for the
dynamics of φ(t).
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Particle in a potential field. 1/2
Let Γ = M ×M

′
phase (symplectic) space, where M = Rn is

the configuration space and M
′

= Rn is the dual space of
momenta. Hamiltonian

H(x , ξ) =
1

2
ξ2 + V (x),

where ξ ∈ M ′ and the function V : M → R is bounded and
the force F (x) = −5 V (x) is locally Lipschitz. Then the
solution (x(t, y , η), ξ(t, y , η)) of the equations of motion

ẋ(t) = ξ(t), ξ̇(t) = F (x(t))

with initial data

x(0, y , η) = y , ξ(0, y , η) = η, y ∈ M , η ∈ M ′

exists and is unique for all t ∈ R.
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Particle in a potential field. 2/2
Denote φ(t)(y , η) = (x(t, y , η), ξ(t, y , η)). The free
Hamiltonian is H0(x , ξ) = ξ2/2, the solution of the equations
of motion has the form φ0(t)(y , η) = (y + tη, η). Suppose

lim
|x |→∞

V (x) = 0,

∫ ∞
0

sup
|x |≥r
|F (x)|dr <∞

Then for any (y , η) ∈ M ×M ′ there is a limit

lim
t→∞

x(t, y , η)

t
= ξ+(y , η),

moreover, if ξ+(y , η) 6= 0, then there is a limit

lim
t→∞

ξ(t, y , η) = ξ+(y , η),

and the inverse image of D = ξ−1+ (M ′ \ {0}) is the open set of
all paths with positive energy unbounded for t →∞.
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Proposition 1 (B.Simon,...)
Let the force satisfy the conditions∫ ∞

0

sup
|x |≥r
|∂αx F (x)|(1 + r 2)1/2dr <∞, |α| = 0, 1.

Then there exists the limit

lim
t→∞

φ(−t)φ0(t) = Ω+

uniformly on compact sets in M × (M ′ \ {0}). The mapping
Ω+ : M × (M ′ \ {0})→ D is symplectic, continuous and
one-to-one. There are relations

H Ω+ = H0, φ(t) Ω+ = Ω+ φ0(t).
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Theorem 3.

The equations of motion of a particle in a potential field
satisfying the above conditions determine an integrable system
in the sense that the dynamics of φ(t) is symplectically
equivalent to the free dynamics of φ0(t) on the domain D in
2n - dimensional phase space, Ω−1+ φ(t) Ω+ = φ0(t). On D

there are n independent integrals of motion in involution.
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Wave operators and integrability in QM, 1/3

Consider the Schrödinger equation in L2(Rn) of the form

i
∂ψ

∂t
= Hψ, (1)

where H = H0 + V (x), H0 = −4 - Laplace operator and the
potential V is short-range, i.e. it satisfIes

|V (x)| ≤ C (1 + |x |)−ν , x ∈ Rn, ν > 1.

Then H defines a self-adjoint operator and there exist the
wave operators Ω±, which are complete and diagonalize
H , HΩ± = Ω±H0.
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Wave operators and integrability in QM, 2/3

Higher order integrals of motion.
If ϕ = ϕ(t, x) is a smooth solution to the free Schrödinger
equation i ϕ̇ +4ϕ = 0 then its derivatives ∂αx ϕ also are
solutions of this equation.
Hence, one can get higher integrals of motion just by replacing
ϕ by ∂αx ϕ in the known integral I0(ϕ) =

∫
Rn |ϕ|2dx .

One gets a set of integrals of motion: Iα =
∫
|∂αx ϕ|2dx .

Now, according to Lemma 1a, we obtain integrals of motion
J0, J

±
α (ψ) = Iα(Ω−1± ψ) for the original Schrödinger equation

with the potential V (x).
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Wave operators and Lippman-Schwinger equation

Constructing wave operators by solving the
Lippman-Schwinger integral equation

ϕ(x , k) = e ikx − 1

4π

∫
R3

e i |k||x−y |

|x − y |
V (y)ϕ(y , k)dy

Ω+ = K−1F ,

K−1(x , k) = (2π)−3/2ϕ(x , k)
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Convergent series

Under the condition ‖V ‖R < 4π, the series of perturbation
theory for the solution ϕ(x , k) converges:

ϕ(x , k) = e ikx − 1

4π

∫
R3

e i |k||x−ξ|

|x − ξ|
V (ξ)e ikξdξ + ...

Rolnik potential. A measurable function V on R3 is called a
Rolnik potential if

||V ||R =

∫
R3

|V (x)||V (y)|
|x − y |2

dxdy <∞.
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Wave operators and integrability for

nonlinear partial differential equations, 1/2

Nonlinear Klein - Gordon equation

ü − a24 u + m2u + f (u) = 0, t ∈ R, x ∈ Rn, , (2)

where a > 0, m ≥ 0.
Eq. (2) is a Hamiltonian system with the Hamiltonian

H =

∫
Rn

(
1

2
p(x)2 +

1

2
(∇u)2 +

1

2
m2u2 + V (u(x))dx = H0 + V

(3)
where V ′ = f and the the Poisson brackets are
{p(x), u(y)} = δ(x − y)
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Wave operators and integrability for

nonlinear partial differential equations, 2/2
One can take f (u) = λ|u|2u, λ ≥ 0 and n = 3. If the initial
data (u(0), u̇t(0)) ∈ Hk+1(Rn)× Hk(Rn) then there exists a
global solution u(t) of Eq (2) with these initial data. Here
Hk(Rn) is the Sobolev space. For any solution of (2) there
exists a unique pair (v+, v−) of solutions for the free
Klein-Gordon equation

v̈ − a24 v + m2v = 0, (4)

lim
t→±∞

‖(u(t), u̇(t))− (v±(t), v̇±(t))‖ = 0.

Moreover, the correspondence (u(0), u̇(0)) 7→ (v±(0), v̇±(0))
defines homeomorphisms (wave operators) Ω± on Hk+1 × Hk .
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Integrals of motion.

If v = v(t, x) is a smooth solution of Eq. (4) then its partial
derivatives ∂αx v is also the solution of Eq. (4). Therefore to
get higher order integrals of motion from the energy integral

E (v) =

∫
(v̇ 2 + a2(∇v)2 + m2v 2) dx/2

one can just replace v by ∂αx v . We get higher integrals of
motion Iα(v) = E (∂αx v) for Eq. (4). One expects that if
v ∈ H |α| then J±α (u) = Iα(Ω±u) will be integrals of motion for
Eq. (2).

Igor Volovich Integrability of quantum and classical dynamical systems 38 / 45



Categorical quantum dynamical system

The categorical quantum dynamical system is the triple
(T,F ,M), where M is a monoidal additive involutive category,
and F is a functor from the category T to the category M,
F : T →M, satisfying the following condition: if the functor F
maps the object T to some object A, then
F : Hom(T ,T )→ UHom(A,A). Moreover, F (t) is a unitary
morphism, F (t) ∈ UHom(A,A) and F (t + s) = F (t) ◦ F (s).

Thus, the functor F defines a unitary representation of the
abelian group T in monoidal additive categories with
involution M.
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Integrals of motion

Integrals of motion in a monoidal additive involutive
category. Let η = (T,F ,M) be a categorical quantum
dynamical system, F a functor from T to M such that
F (T ) = A ∈M and F : Hom(T ,T )→ UHom(A,A). Further,
let G be a functor from T to M such that G (T ) = A ∈M

and G : Hom(T ,T )→ UHom(A,A). If the unitary morphisms
F (t) and G (s) commute for all t, s ∈ T , i.e.
F (t) ◦ G (s) = G (s) ◦ F (t), then the functor G will be called
integral of motion for the quantum dynamical system η.
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Quantum quench

In physical works, quantum quench is usually called a change
of the state of a quantum system under the influence of
external perturbation. We will understand quantum quench in
a generalized sense, when the quantum system itself may
change under the influence of external perturbations and
discuss in more detail a special type of quantum quenches,
which will be called homological quantum quench or Pauli
quench.
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Homological quantum quench

Each physical system is associated with a Hilbert space.
Consider the sequence of actions on the system, leading,
possibly, not only to a change in the state of the system, but
also to a change in the system itself, i.e. we have a sequence

H0
f0−→ H1

f1−→ H2
f2−→ ...,

where Hn Hilbert spaces, and fn continuous linear mappings
(morphisms). Such chains of actions will be called quantum
quenches.
Consider a special case of quantum quenches, when
fnfn−1 = 0, which we will call the sequence of Pauli quenches.
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Triangulated categories

The category of Hilbert spaces Hilb is additive, but it is not
Abelian. For any additive category A, a triangulated category
K(A) is constructed, a homotopy category of chain complexes
over A.
A triangulated category is the additive category K equipped
with the additive shift functor [1]:
K→ K and the class of so-called distinguished exact
triangles, that is morphisms of X

u−→ Y
v−→ Z

w−→ X [1],
satisfying some axioms.
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K→ K and the class of so-called distinguished exact
triangles, that is morphisms of X

u−→ Y
v−→ Z

w−→ X [1],
satisfying some axioms.
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Triangulated categories and Quantum quenches

The monoidal triangulated category K(Hilb) of homotopy
chain complexes is associated with the additive monoidal
category of Hilbert spaces Hilb
The additive category K(Hilb) is a triangulated category. The
shift functor is defined by graduation shifts, and the selected
triangle is connected with the morphism of the complexes

f : K → L and has the form K
f−→ L→ C (f )→ K [1], where

the complex C (f ) is called the cone of the morphism f , we
have C (f )n = Kn+1 ⊕ Ln.
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Summary

• Any quantum dynamical system is unitarily equivalent to
the set of classical harmonic oscillators and in this sense
is completely integrable in category of Hilbert spaces.

• Higher order integrals of motion are indicated for a
number of quantum and classical dynamical systems by
using wave operators.

• Triangulated categories describing quantum quenches are
considered.
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